

CS18FS4096(3/5/W) CS16FS4096(3/5/W)

Rev. 1.0

Revision History

<u>Rev. No.</u> 1.0

<u>History</u> Initial issue Issue Date Apr.15,2014

CS18FS4096(3/5/W) CS16FS4096(3/5/W)

GENERAL DESCRIPTION

The CS16FS4096(3/5/W) and CS18FS4096(3/5/W) are a 4,194,304-bit high-speed Static Random Access Memory organized as 256K(512) words by 16(8) bits. The CS16FS4096(3/5/W) (CS18FS4096(3/5/W)) uses 16(8) common input and output lines and have an output enable pin which operates faster than address access time at read cycle, And CS16FS4096(3/5/W) allows that lower and upper byte access by data byte control(\overline{UB} , \overline{LB}). The device is fabricated using advanced CMOS process, 6-TR based cell technology and designed for high-speed circuit technology. It is particularly well suited for use in high-density high-speed system applications. The CS16FS4096(3/5/W) is packaged in a 400mil 44-pin TSOP2 and 48FBGA. The CS18FS4096(3/5/W) is packaged in a 400mil 44-pin TSOP2 and 36FBGA.

FEATURES

- Fast Access Time 8,10,12,15ns(Max)
- CMOS Low Power Dissipation Standby (TTL): 10mA (Max.) (CMOS): 6mA (Max.) Operating: 35mA (8ns, Max..)
 - : 30mA(10ns ,Max.)
- Single 3.3±0.3V or 5.0±0.5V Power Supply
- Wide range (1.65V~3.6V) of Power Supply
- TTL Compatible inputs and Outputs
- Fully Static Operation, No Clock or Refresh required
- Three State Outputs
- Data Byte Control(x16 Mode)
 - \overline{LB} : I/O₀~I/O₇, \overline{UB} : I/O₈~I/O₁₅
- Standard 44TSOP2 and 36FBGA Package Pin Configuration for 512k x 8
- Standard 44TSOP2 and 48FBGA Package Pin Configuration for 256k x 16
- Operating in Commercial and Industrial Temperature range.

2

CS18FS4096(3/5/W) CS16FS4096(3/5/W)

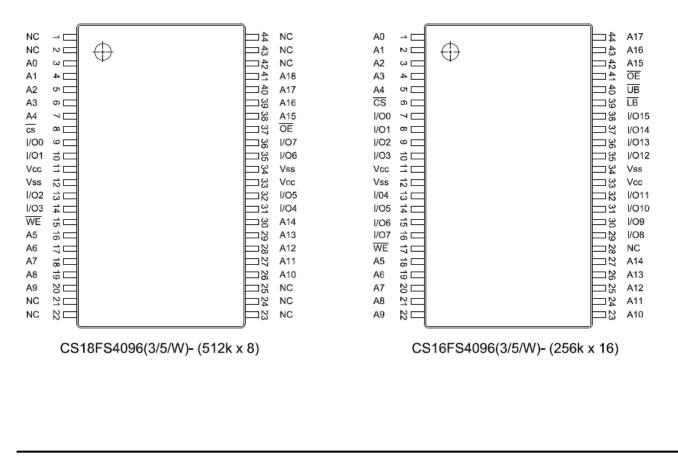
Order Information

Density	Org.	Part Number		Speed		Package	Temp.	
Density	Olg.		V _{CC} (V)	t _{AA} (ns)	t _{oe} (ns)	Гаскаус	remp.	
		CS16FS40963GC(I)-08	3.3	8	4	44 TSOP2		
		CS16FS4096WGC(I)-08	3.3	8	4	44 TSOP2		
		CS16FS4096WGC(I)-10	2.5	10	5	44 TSOP2		
		CS16FS4096WGC(I)-12	1.8	12	6	44 TSOP2		
		CS16FS40963HC(I)-08	3.3	8	4	48 FBGA		
		CS16FS4096WHC(I)-08	3.3	8	4	48 FBGA		
		CS16FS4096WHC(I)-10	2.5	10	5	48 FBGA		
		CS16FS4096WHC(I)-12	1.8	12	6	48 FBGA		
4Mb	256Kx16	CS16FS40965GC(I)-10	5	10	5	44 TSOP2	C : Commercial	
		CS16FS40963GC(I)-10	3.3	10	5	44 TSOP2	l : Industrial	
		CS16FS4096WGC(I)-10	3.3	10	5	44 TSOP2		
		CS16FS4096WGC(I)-10	2.5	10	5	44 TSOP2		
		CS16FS4096WGC(I)-15	1.8	15	7	44 TSOP2		
		CS16FS40963HC(I)-10	3.3	10	5	48 FBGA		
		CS16FS4096WHC(I)-10	3.3	10	5	48 FBGA		
		CS16FS4096WHC(I)-10	2.5	10	5	48 FBGA		
		CS16FS4096WHC(I)-15	1.8	15	7	48 FBGA		

Density Org.		Part Number	Speed Speed			Dookogo	Temp.
Density Org.	Fait Nulliber	V _{CC} (V)	t _{AA} (ns)	t _{OE} (ns)	Package	remp.	
		CS18FS40963GC(I)-08	3.3	8	4	44 TSOP2	
		CS18FS4096WGC(I)-08	3.3	8	4	44 TSOP2	
		CS18FS4096WGC(I)-10	2.5	10	5	44 TSOP2	
4Mb	512Kx8	CS18FS4096WGC(I)-12	1.8	12	6	44 TSOP2	C : Commercial
4110		CS18FS40963YC(I)-08	3.3	8	4	36 FBGA	I : Industrial
		CS18FS4096WYC(I)-08	3.3	8	4	36 FBGA	
		CS18FS4096WYC(I)-10	2.5	10	5	36 FBGA	
		CS18FS4096WYC(I)-12	1.8	12	6	36 FBGA	

3

Rev. 1.0



CS18FS4096(3/5/W) CS16FS4096(3/5/W)

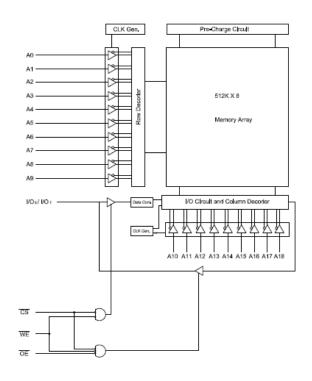
CS18FS40965GC(I)-10	5	10	5	44 TSOP2
CS18FS40963GC(I)-10	3.3	10	5	44 TSOP2
CS18FS4096WGC(I)-10	3.3	10	5	44 TSOP2
CS18FS4096WGC(I)-10	2.5	10	5	44 TSOP2
CS18FS4096WGC(I)-15	1.8	15	7	44 TSOP2
CS18FS40963YC(I)-10	3.3	10	5	36 FBGA
CS18FS4096WYC(I)-10	3.3	10	5	36 FBGA
CS18FS4096WYC(I)-10	2.5	10	5	36 FBGA
CS18FS4096WYC(I)-15	1.8	15	7	36 FBGA

PIN CONFIGURATIONS

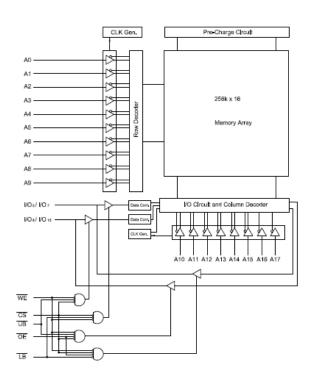
44TSOP2-400mil

CS18FS4096(3/5/W) CS16FS4096(3/5/W)

6x8mm mini-BGA with ball pitch 0.75mm


	1	2	3	4	5	6
Α	A0	A1	NC	A3	A6	A8
В	104	A2	WE	A4	A7	100
С	105		NC	A5		101
D	Vss					Vcc
Е	Vcc					Vss
F	106		A18	A17		102
G	107	OE	CS	A16	A15	103
Н	A9	A10	A11	A12	A13	A14

36 ball mini-BGA


	1	2	3	4	5	6
Α	LB	ŌĒ	A0	A1	A2	NC
в	108	UB	A3	A4	CS	100
С	109	IO10	A5	A6	101	102
D	Vss	IO11	A17	A7	IO3	Vcc
Е	Vcc	IO12	NC	A16	104	Vss
F	IO14	IO13	A14	A15	105	106
G	IO15	NC	A12	A13	WE	107
н	NC	A8	A9	A10	A11	NC

CS18FS4096(3/5/W) – (512k x 8) CS16FS4096(3/5/W) – (256k x 16) 48ball mini-BGA

FUNCTIONAL BLOCK DIAGRAM

CS18FS4096(3/5/W) - (512k x 8)

CS16FS4096(3/5/W) - (256k x 16)

5

CS18FS4096(3/5/W) CS16FS4096(3/5/W)

Absolute Maximum Ratings*

Para	ameter	Symbol	Rating	Unit
Valtage on Any Din	3.3V Product			
Voltage on Any Pin Relative to V _{SS}	5.0V Product	$V_{\text{in}}, V_{\text{OUT}}$	-0.5 to V_{CC} +0.5V	V
	Wide V _{CC} ** Product			
Voltage on V _{CC}	3.3V Product		-0.5 to 4.6	
Supply Relative to	5.0V Product	$V_{\text{in}}, V_{\text{OUT}}$	-0.5 to 7.0	V
V _{SS}	Wide V _{CC} ** Product		-0.5 to 4.6	
Power Dissipation		PD	1.0	W
Storage Temperature		T _{STG}	-65 to 150	°C
Operating Temperatur	e Commercial	T _A	0 to 70	°C
Industrial		T _A	-40 to 85	°C

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the

device. This is a stress rating only and functional operation of the device at these or any other conditions above

those indicated in the operating sections of this specification is not implied.

Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**Wide VCC Range is 1.65V~3.6V

Recommended DC Operating Conditions*($T_A=0$ to $70^{\circ}C$)

Parameter	Operating V _{CC} (V)	Symbol	Min.	Тур.	Max.	Unit	
	5.0	V _{CC}	4.5	5.0	5.5		
Supply Voltage	3.3	V _{CC}	3.0	3.3	3.6	v	
Supply Voltage	Wide 2.4~3.6	V _{CC}	2.4	2.5/3.3	3.6	v	
	Wide 1.65~2.2	V _{CC}	1.65	1.8	2.2		
Ground		V_{SS}	0	0	0	V	
	5.0	V _{IH}	2.2	-	V _{CC} +0.5		
Input High Voltage	3.3	V _{IH}	2.0	-	V _{CC} +0.5	V	
Input High Voltage	Wide 2.4~3.6	V _{IH}	2.0	-	V _{CC} +0.3		
	Wide 1.65~2.2	V _{IH}	1.4	-	V _{CC} +0.2		
	5.0	V _{IL}	-0.3	-	0.8		
Input Low Voltage	3.3	V _{IL}	-0.3	-	0.8	V	
	Wide 2.4~3.6	V _{IL}	-0.3	-	0.7		

6

Rev. 1.0

CS18FS4096(3/5/W) CS16FS4096(3/5/W)

	Wide 1.65~2.2	V _{IL}	-0.2	-	0.4	
--	---------------	-----------------	------	---	-----	--

*The above parameters are also guaranteed for industrial temperature range.

DC and Operating Characteristics*($T_A=0$ to $70^{\circ}C$)

Parameter	Symbol	Test Conditions		Min	Max	Unit
Input Leakage Current	ILI	$V_{IN}=V_{SS}$ to V_{CC}	-2	2	uA	
Output Leakage Current**	I _{LO}	$\overline{CS} = V_{IH} \text{ or } \overline{OE} = V_{IH} \text{ or } \overline{WE} = V_{IL}$ $V_{OUT} = V_{SS} \text{ to } V_{CC}$		-2	2	uA
Operating Current**	I _{CC}	Min.Cycle,100% Duty $\overline{CS} = V_{IL}, V_{IN} = V_{IH} \text{ or } V_{IL}, I_{OUT} = 0 \text{mA}$	8ns 10ns 12ns	-	35 30 28	mA
			15ns		25	
Standby	I _{SB}	Min. Cycle, $\overline{CS} = V_{IH}$		-	10	
Current	I _{SB1}	f=0MHz,		-	6	mA
		V _{CC} =4.5V, I _{OL} =8mA, 5.0V Product		-	0.4	
Output Low Voltage	V _{OL}	V_{CC} =3.0V, I _{OL} =8mA, 3.3V Product & Wi V _{CC} ** Product	de	-	0.4	V
Level		V_{CC} =2.4V, I _{OL} =1mA, Wide V _{CC} ** Produc	:t	-	0.4	
		$V_{CC} \mbox{=} 1.65 \mbox{V}, \mbox{ I}_{OL} \mbox{=} 0.1 \mbox{mA}, \mbox{ Wide } V_{CC} \mbox{** Pro}$	duct	-	0.2	
		V_{CC} =4.5V, I _{OH} = -4mA, 5.0V Product		2.4	-	
Output High Voltage	V _{OH}	V_{CC} =3.0V, I _{OH} = -4mA, 3.3V Product & V V_{CC} ** Product	Vide	2.4	-	V
Level		V_{CC} =2.4V, I _{OH} = -1mA, Wide V _{CC} ** Produ	uct	1.8	-	
		V_{CC} =1.65V, I_{OH} = -0.1mA, Wide V_{CC} ** Pr	oduct	1.4	-	

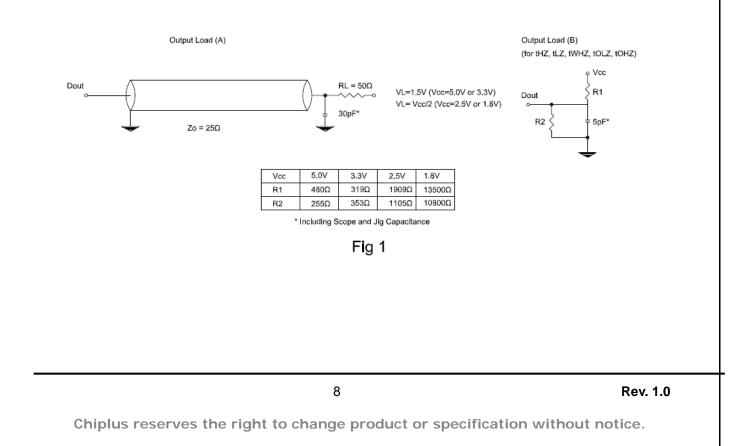
*The above parameters are also guarantee for industrial temperature range.

**Wide V_{CC} Range is $1.65V \sim 3.6V$

7

CS18FS4096(3/5/W) CS16FS4096(3/5/W)

Capacitance*(T_A= 25°C, f= 1.0MHz)

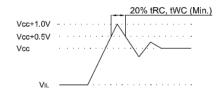

Item	Symbol	Test Conditions	TYP	Max	Unit
Input/ Output Capacitance	C _{I/O}	V _{I/O} =0V	-	8	pF
Input Capacitance	C _{IN}	V _{IN} =0V	-	6	pF

*Capacitance is sampled and not 100% tested.

Test Conditions*

Parameter	Value		
	0 to 3.0V (V _{CC} =3.3V or 5.0V)		
Input/ Output Capacitance	0 to 2.5V (V _{CC} =2.5V)		
	0 to 1.8V (V _{CC} =1.8V)		
Input Rise and Fall Time	1V/1ns		
Input and Output Timing Reference Levels	1.5V (V _{CC} =3.3V or 5.0V)		
	1/2V _{CC} (V _{CC} = 1.8V or 2.5V)		
Output Load	See Fig. 1		

*The above parameters are also guaranteed for industrial temperature range.



CS18FS4096(3/5/W) CS16FS4096(3/5/W)

Overshoot Timing

Undershoot Timing

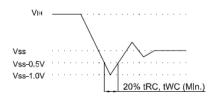


Fig 2

Functional Description (x8 Mode)

\overline{CS}	\overline{WE}	\overline{OE}	Mode	I/O Pin	Supply Current
Н	Х	X*	Not Select	High-Z	I_{SB}, I_{SB1}
L	Н	Н	Output Disable	High-Z	I _{CC}
L	Н	L	Read	D _{OUT}	I _{CC}
L	L	Х	Write	D _{IN}	I _{CC}

*X means don't care

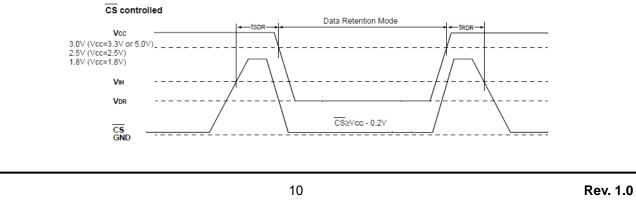
Functional Description (x16 Mode)

\overline{CS}	WE	\overline{OE}	\overline{LB} **	\overline{UB} **	Mode	I/O F	Supply		
0.0		θĽ	LD	СЪ		I/O ₀ ~I/O ₇	I/O ₈ ~I/O ₁₅	Current	
Н	Х	Х*	Х	Х	Not Select	High-Z	High-Z	I _{SB} , I _{SB1}	
L	Н	Н	Х	Х	Output	High-Z	High-Z	L	
L	Х	Х	Н	Н	Disable	Tiigii-2	r ligh-z	I _{CC}	
L			L	Н		D _{OUT}	High-Z		
	Н	L H L Read High-Z D _O		D _{OUT}	I _{CC}				
			L	L		D _{OUT} D _{OUT}			
			L	Н		D _{IN}	High-Z		
L	L	Х	Н	L	Write	High-Z	D _{IN}	I _{CC}	
			L	L		D _{IN}	D _{IN}		

*X means don't care

9

Rev. 1.0


. .

4M Async Fast SRAM

CS18FS4096(3/5/W) CS16FS4096(3/5/W)

Similar V_{CC}(V) Similar Similar Similar V_{CC} for $5.0V$ 5.0 2.0 $ 5.5$ V_{CC} for $3.3V$ 3.3 V_{DR} $\overline{CS} \ge V_{CC} - 0.2V$ 2.0 $ 3.6$ V_{CC} for $Wide$ $2.4V \sim 3.6V$ $2.5/3.3$ V_{DR} $\overline{CS} \ge V_{CC} - 0.2V$ 2.0 $ 3.6$ Wide 1.8 V_{DR} $\overline{CS} \ge V_{CC} - 0.2V$ 1.5 $ 3.6$									
Parameter	Product		Symbol	Test Condition	Min.	Тур.	Max.	Unit	
		5.0			2.0	-	5.5		
V_{CC} for Data Retention $3.3V$ Product 3.3 Product V_{DR} $\overline{CS} \ge V_{CC} - 0.2V$ 2.0 V_{DR} $\overline{CS} \ge V_{CC} - 0.2V$ 2.0	2.0	-	3.6	Ň					
	-	3.6							
		1.8			1.5	-	3.6		
	5.0V Product	5.0		V _{CC} =2.0V	-	-	5		
Data	3.3V Product	3.3		\overline{CS} ≥V _{CC} - 0.2V V _{IN} ≥ V _{CC} - 0.2V or	-	-	5		
Retention Current	Wide 2.4V~3.6V	2.5/3.3	I _{DR}	V _{IN} ≤0.2V	-	-	6	mA	
	Wide 1.65V~2.2V	1.8		V_{CC} =1.5V, $\overline{CS} \ge V_{CC}$ - 0.2V, $V_{IN} \ge V_{CC}$ - 0.2V or $V_{IN} \le 0.2V$	-	-	6		
Data Retention Set-Up Time			t _{SDR}	See Data	0	-	-	nS	
Recovery Time			t _{RDR}	Retention Wave form (below)	5	-	-	mS	

Data Retention Wave form

CS18FS4096(3/5/W) CS16FS4096(3/5/W)

Read Cycle*

Parameter	Symbol	8ns		10ns		12ns		15ns		Unit
Farameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Read Cycle Time	t _{RC}	8	I	10	I	12	-	15	-	ns
Address Access Time	t _{AA}	-	8	-	10	-	12	-	15	ns
Chip Select to Output	t _{co}	-	8	-	10	-	12	-	15	ns
Output Enable to Valid	t _{OE}	-	4	-	5	-	6	-	7	ns
Output							0			
\overline{UB} , \overline{LB} Access Time**	t _{BA}	-	4	-	5	-	6	-	7	ns
Chip Enable to Low-Z	t _{LZ}	3	_	3	-	3		3		ns
Output	4.2	5	_	5	_	5		5	_	115
Output Enable to Low-Z	to	0	_	0	_	0	_	0	_	ns
Output	t _{oLZ}	0	-	0	_	0	-	0		110
\overline{UB} , \overline{LB} Enable to Low-Z	t _{BLZ}	0	_	0	_	0	_	0	_	ns
Output**	чвlz									
Chip Disable to High-Z	t _{HZ}	0	4	0	5	0	6	0	7	ns
Output	٩Z	Ŭ	т	0	5	0	Ŭ	U	'	115
Output Disable to High-Z	t _{онz}	0	4	0	5	0	6	0	7	ns
Output	•OHZ	Ŭ	-	0	0	0	Ŭ	0	'	113
\overline{UB} , \overline{LB} Disable to High-Z	t _{BHZ}	0	4	0	5	0	6	0	7	ns
Output**	•BHZ	Ŭ	т	0	5	0	Ŭ	U	'	115
Output Hold from Address	t _{он}	3	_	3	_	3	_	3	_	ns
Change	чон	5	-	5	-	5	-	5	_	115
Chip Selection Power Up	t _{PU}	0	_	0	_	0	_	0	_	ns
Time	٩U	0		0		Ŭ	_	0		115
Chip Selection Power	t _{PD}	_	8	-	10	_	12	_	15	ns
Down Time	٩U		0	_	10	_	12		15	113

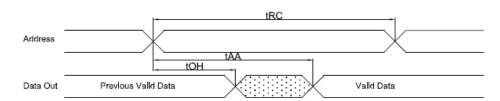
*The above parameters are also guaranteed for industrial temperature range.

CS18FS4096(3/5/W) CS16FS4096(3/5/W)

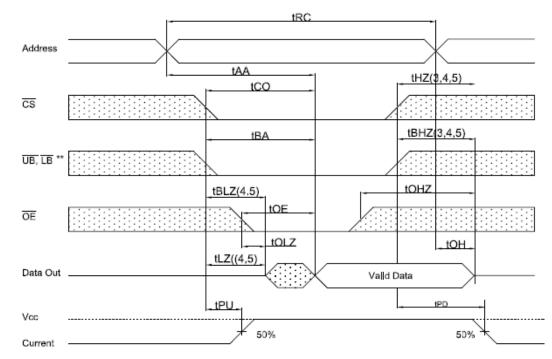
Write Cycle*

Deremeter	Symbol	8ns		10ns		12ns		15ns		Unit
Parameter		Min	Max	Min	Max	Min	Max	Min	Max	Unit
Write Cycle Time	t _{WC}	8	-	10	-	12	-	15	-	ns
Chip Select to End of Write	t _{cw}	6	-	7	-	9	-	12	-	ns
Address Set-up Time	t _{AS}	0	-	0	-	0	-	0	-	ns
Address Valid to End of Write	t _{AW}	6	-	7	-	9	-	12	-	ns
Write Pulse Width(\overline{OE} High)	t _{WP}	6	-	7	-	9	-	12	-	ns
Write Pulse Width(\overline{OE} Low)	t _{WP1}	8	-	10	-	12	-	15	-	ns
\overline{UB} , \overline{LB} Valid to End of Write**	t _{BW}	6	-	7	-	9	-	12	-	ns
Write Recovery Time	t _{WR}	0	-	0	-	0	-	0	-	ns
Write to Output High-Z	t _{wHZ}	0	4	0	5	0	6	0	7	ns
Data to Write Time Overlap	t _{DW}	4	-	5	-	7		8	-	ns
Data Hold from Write Time	t _{DH}	0	-	0	-	0	-	0	-	ns
End of Write to Output Low-Z	t _{ow}	3	-	3	-	3	-	3	-	ns

*The above parameters are also guaranteed for industrial temperature range.


Chiplus reserves the right to change product or specification without notice.

Rev. 1.0

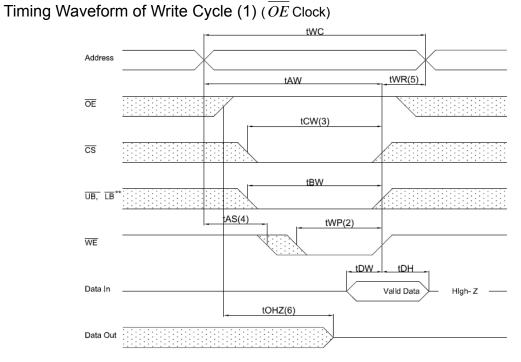

Timing Diagram

Timing Waveform of Read Cycle (1) (Address Controlled, $\overline{CS} = \overline{OE} = V_{IL}$, $\overline{WE} = V_{IH}$, \overline{UB} , $\overline{LB} = V_{IL}^{**}$)

** Those parameters are applied for x16 mode only.

Timing Waveform of Read Cycle (2) (\overline{WE} =VIH)

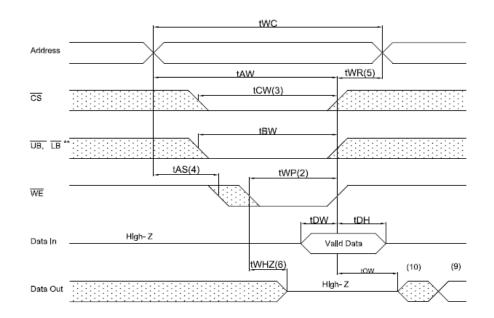
NOTES (Read Cycle)


- 1. WE is high for read cycle
- 2. All read cycle timing is referenced from the last valid address to the first transition address.
- 3. t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit condition and are not referenced to V_{OH} or V_{OL} levels.
- 4. At any given temperature and voltage condition, t_{HZ} (Max.) is less than t_{LZ} (Min.) both for a given device and from

CS18FS4096(3/5/W) CS16FS4096(3/5/W)

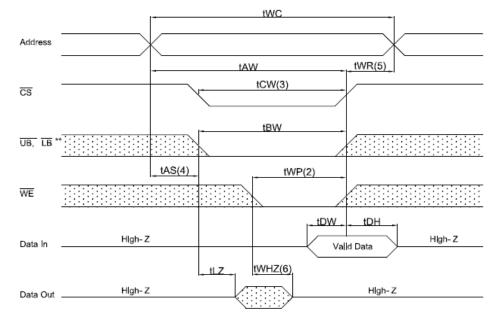
device to device.

- 5. Transition is measured ±200mV from steady state voltage with Load (B). This parameter is sampled and not 100% tested.
- 6. Device is continuously selected with $CS = V_{IL}$.
- 7. Address valid prior to coincident with CS transition low.
- 8. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.
- ** Those parameters are applied for x16 mode only.

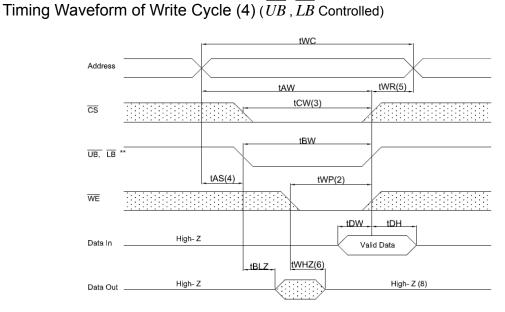


** Those parameters are applied for x16 mode only.

Rev. 1.0



Timing Waveform of Write Cycle (2) (\overline{OE} =Low fixed)


** Those parameters are applied for x16 mode only.

Timing Waveform of Write Cycle (3) (\overline{CS} =Controlled)

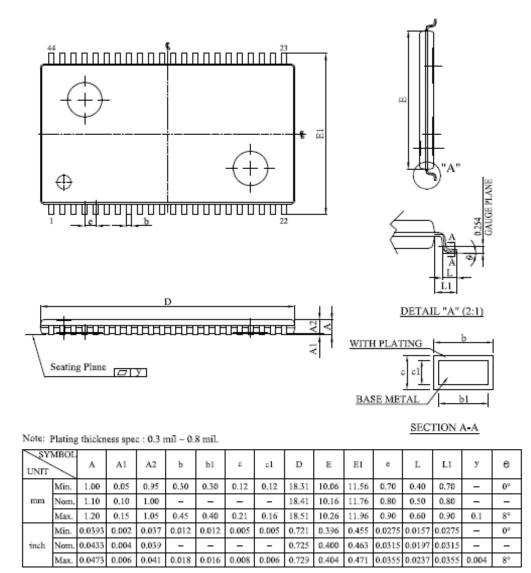
** Those parameters are applied for x16 mode only.

NOTES (Write Cycle)

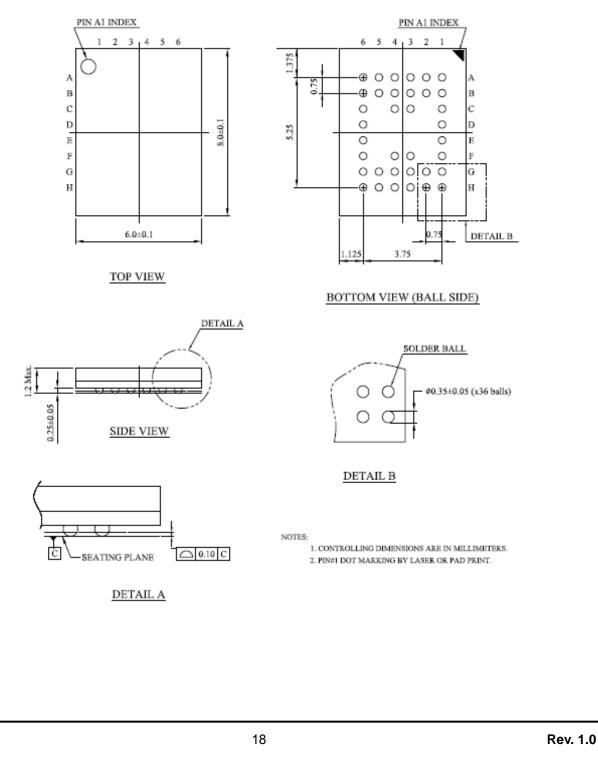
- 1. All write cycle timing is referenced from the last valid address to the first transition address.
- 2. A write occurs during the overlap of a low CS, WE, LB and UB. A write begins at the latest transition \overline{CS} going low and \overline{WE} going low;

A write ends at the earliest transition CS going high or \overline{WE} going high. t_{WP} is measured from the beginning of write to the end of write.

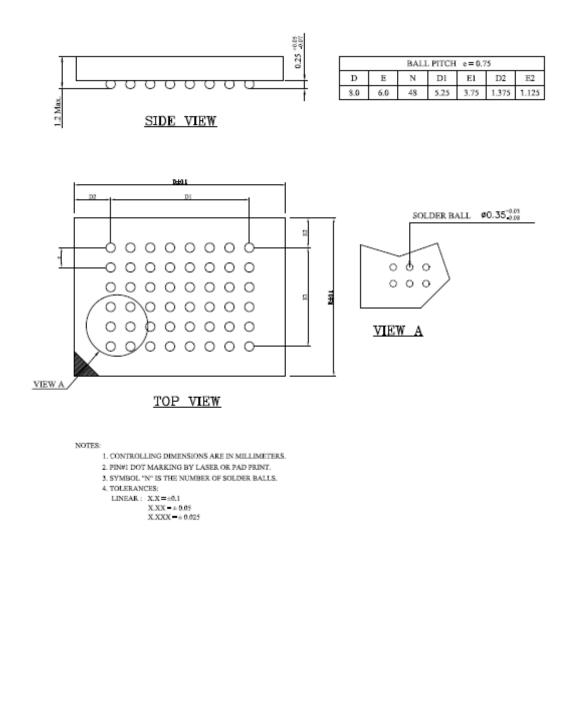
- 3. t_{CW} is measured from the later of *CS* going low to end of write.
- 4. t_{AS} is measured from the address valid to the beginning of write.
- 5. WE is measured from the end of write to the address change. t_{WR} applied in case a write ends as CS or \overline{WE} going high.
- 6. If *OE*, *CS* and *WE* are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase of the output must not be applied because bus contention can occur.
- 7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.
- 8. If *CS* goes low simultaneously with *WE* going or after WE going low, the outputs remain high impedance state.
- 9. D_{OUT} is the read data of the new address.
- 10. When CS is low : I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be applied.


** Those parameters are applied for x16 mode only

16


Package outline dimensions

44L-TSOP2-400mil


36ball mini-BGA-6x8mm (ball pitch: 0.75mm)

Rev. 1.0

48ball mini-BGA-6x8mm (ball pitch: 0.75mm)

